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Abstract
We propose to use regular pumping rate - pumping pressure
data for estimating the formation hydraulic properties in the
vicinity of wellbore without interrupting the operations.  A
distinctive feature of our analysis is that we account for the
effects of pumping preceding the test interval.  We derive our
model from the same assumptions as in a standard pressure
draw-down or pressure build-up test analysis.  We introduce
an additional parameter characterizing an effective pumping
rate prior to the test.  This parameter is of crucial importance
for our procedure because there is no shut-in period preceding
the test during regular operations.  Moreover, we demonstrate
that accounting for this parameter does affect analysis of a
traditional pressure draw-down or build-up test as well.  Our
method produces good data matching, and the results are
stable with respect to the selection of the portion of data for
fitting.  We derive our conclusions after analyzing almost
entire data set, rather than only a portion of the pressure fall-
off or build-up curve.  This makes the results more reliable and
stable with respect to measurement errors.

The new method we have developed is implemented in a
code named ODA (Operational Data Analysis).  This program
incorporates a special curve-fitting procedure which we
designed for our method to significantly simplify the problem
and reduce the amount of computations. Therefore, the
analysis can be preformed on a laptop computer.

Introduction
Using a well test to estimate hydraulic formation

properties in the vicinity of wellbore is a common practice in
petroleum and environmental industries.  The basic theory of

well test analysis was proposed in an early work of Theis (Ref.
1) and was substantially enhanced in later research.  The
accrued results and experience are summarized in several
monographs and surveys Refs. 2-8.  The traditional technique
usually requires interrupting regular operations for a certain
period of time.  During this time, special operations are
performed at the well, and the pumping rates and pressures are
measured and analyzed.  Such operations normally include
shutting-in the well and impose additional costs on the
operator.

Instead of interrupting the operations, we propose to select
a portion of pumping data over a certain time interval and
analyze this information.  Such a situation introduces new
elements into analysis of the data.  The injection rate, which is
usually maintained constant in a traditional well test, can be
arbitrary varying in time.  Also, the absence of a shut-in period
preceding the test implies that the models used for data
interpretation may not work.  The reason for this is that
traditional methods use the solution to flow equation which is
valid only if the impact of pre-test pumping can be neglected.
To address this issues, in our previous papers, Refs. 9, 10, we
performed rigorous analysis of error introduced by such an
assumption.  We obtained that the difficulties with interpreting
well test data can be partially explained through this error.
Moreover, we proposed a modified solution which
substantially decreases, and in some cases practically
eliminates the problem of matching the data.  The crucial point
of our argument in Refs. 9, 10 was the introduction of an
additional parameter for evaluating an effective pre-test
pumping rate on an indefinite time interval preceding the test.
This parameter, along with more traditional coefficients of
transmissivity and storativity and skin factor, was used for
matching the data curve.  On examples, we demonstrated that
the recovered value of the effective rate approximates the
actual pre-test pumping rate with a remarkable accuracy.  It is
important to note that when our method is applied to
traditional well test data set, we obtain a better fitting on a
larger time interval than traditional methods.  Moreover, the
results are stable with respect to variations of this time
interval.  Comparison of our conclusions with results obtained
independently using traditional methods also showed that our
estimates of the skin factor are much lower, whereas the
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transmissivityity coefficient is recovered at a higher value.
Correct estimation of these parameters is crucial for planning
waterflood.

In this paper, we consider an alternative approach to
account for pre-test pumping in well test data interpretation.
The idea is as follows.  From the point of view of the
mathematical model of the flow into the formation, the
principle consequence of pre-test pumping is non-uniform
initial pressure distribution near the wellbore at the beginning
of the test.  If the pumping prior to the test was performed at
approximately constant rate, then it is natural to assume that
the initial pressure distribution is steady-state.  Such an idea
was explored in Refs. 3, 11.  We propose to use the injection
rate corresponding to this steady-state solution as an additional
fitting parameter.  We demonstrate that we obtain the same
modified equation as we developed earlier in Refs. 9, 10.
However, the error analysis we performed using indefinite
time interval of pre-test pumping become unavailable on this
way.  At the same time, we obtain an easy way to evaluate an
effective dimensionless wellbore radius.  This radius may
differ from the actual radius of tubing at perforation interval.
There are several reasons for this difference.  A test procedure
and further analysis actually recover integral properties of the
formation near the wellbore, whereas in fact these properties
usually are heterogeneous.  The formation near the wellbore is
subject to damage caused by various chemical factors, see Ref.
12.  In addition to that, the rock can be fissured, so the model
of radial flow is approximate.  The steady-state solution itself
(see below) is expressed through a logarithmic function of the
distance from the well, therefore, it is physically meaningful
only within a certain length scale.  Although the effective
radius is a conventional parameter, comparison of results of
well tests performed at different times can provide an
important information about the character of changes in the
formation.

An estimation algorithm based on our method has been
implemented in a computer code named ODA (Operations
Data Analysis).  In example below, we use computations
performed using this code.

The paper is organized as follows.  First, we present a
solution to a transient flow equation which is valid for a
steady-state initial pressure distribution and variable injection
rate.  We derive an equation for estimating the formation
parameters by fitting the measured pressure curve and compare
it with the solution obtained in Refs. 9, 10.  Second, we
describe the special minimization procedure we designed for
fitting the data curve.  Third, we propose a method of
estimating the ambient reservoir pressure and effective
dimensionless wellbore radius using.  The idea of the method
is to simulate a special well test using the results of data fitting.
Fourth, we present an example of application of our procedure.
Finally, we formulate conclusions and describe step-by-step
the procedure which we propose for estimating hydraulic
formation properties using regular pumping data.

Theoretical Background
In this section we present the theoretical background of the
method we propose.

The main assumption we use are the same as in a
traditional well test analysis.  Namely, we assume isothermal
radial flow of a slightly compressible fluid into a homogeneous
formation which is described by equation
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(a variable flow rate at the wellbore)

Here p t r,� �  is the fluid pressure at the time t and distance r

from the well, �  is the porosity of the formation near the

wellbore, �  is the viscosity of the fluid, k is the permeability,

and c is the compressibility coefficient.  In Equation (4), H is
the thickness of the injection/production layer.

Equations (1)-(4) are well-known, see, e.g., Refs. 4, 13.  If
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Coefficients A and B are introduced to simplify further
calculations and are expressed through transmissivity T and
storativity S by
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Conversely, transmissivity T and storativity S can be expressed
through A and B:
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Unit conversion coefficients have to be introduced into Eqs
(7) and (8) if the parameters are represneted in incompatible
units.  Solution (5) can be obtained from the well-known
exponential integral solution through Duhamel integral, see

Refs. 14, 15.  If ( )
0
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i.e. we obtain the exponential integral solution.  However, the
solution to problem (1)-(4) is not as simple in case where the

initial pressure distribution p r0 � �  is not uniform.

In many practical situations the regular pumping rates do
not vary too much.  Thus, it is natural to assume that the initial
pressure distribution corresponds to the steady-state flow
established by the beginning of the test.  The steady-state
solution to Eq. (1) is provided by
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where 1Q−  is an effective pumping rate corresponding to the

steady-state pressure distribution and r∞  is the distance from

the wellbore where the pressure is equal to the ambient
pressure at infinity.  Solution (10) is valid only for radii r
within a certain range, because the logarithm on the right-hand
side has an infinite limit both as 0r →  and r → ∞ .  In fact,

r∞  estimates the upper bound for the interval where the steady-

state solution presented in Eq. (10) can be applied.  If we

substitute p r0� �  from Eq. (10) as the initial condition into

Eq. (2), then the solution to problem (1)-(4) is given by
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see e.g. Ref. 3.  Simple calculations yield
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If we put wr r= , where wr  is an effective wellbore radius,

then we obtain Eq. (1) from Ref. 9.  A significant difference
between the latter and Eq. (12) lies in the ways how these
equations have been obtained.  The derivation of Eq. (12)
presented here actually hides some important estimates
obtained in Ref. 10.  At the same time, it suggests a way to
estimate the effective wellbore radius, see below.

Assuming wr r=  everywhere below, we omit the index w

in further calculations without confusion.
To account for possible skin effect we introduce a

dimensionless skin factor in a standard way, see Ref. 4, so that
Eq. (12) transforms into
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Thus, the wellbore pressure calculated at time t  depends on

five parameters: pumping pressure p0  at the initial moment of

time 0t t= , an effective pre-test pumping rate 1Q− , skin

factor s  and coefficients A , B  defined in Eq. (6).  Strictly
speaking, the skin factor has to be added to Eq. (10) as well:
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However, taking into account our remarks about the effective

wellbore radius, we incorporate the skin factor into wr ,. so that

for p0  in Eq. (13) we get
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The ratio /wr r∞  can be called a dimensionless effective

wellbore radius.  Changes of its magnitude reflect the
formation damage near the well.

Now, with all calculations done, the data analysis reduces
to matching the pressure curve with pressures calculated using
formula (13).
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Minimization procedure
In this section we describe a minimization procedure for
matching the measured pressures.

The procedure goes the following way.  First, we specify a
time interval where we want to analyze the data.  As it follows
from estimates obtained earlier in Refs. 9, 10, it is preferable
that the injection rate did not vary too much prior to this
interval.  Also, the flow during at least a part of the test time
interval must be transient.  The last requirement means that
both pressures and pumping rates have to have substantial
variation on this interval.  Then, the entire selected time
interval of pumping data is split into two parts.  The earlier
part can be called the beginning phase, the later part can be
called the test phase.  The test phase is used in a best-fitting

procedure to estimate the formation parameters.  Denote by 0t

and 2t , respectively, the beginning and the end of the whole

selected interval, and denote by 1t  the splitting point between

the beginning and test phases, see Fig. 1.  Then,
mathematically, the problem reduces to minimization of
criterion
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with respect to five parameters A , B , p0 , 1Q−  and s .  The

integral criterion (16) can be replaced with a discrete one
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All weight coefficients iw  in Eq. (17) and function Pw  in Eq.

(16) are positive .  Although there is no ultimate criterion for
the best selection of those, they should take relatively large
values at the points where the measured data is less affected by
possible measurement error and side effects.

The further argument can be applied in either case in a
similar way.  For definiteness, we will focus here on integral
criterion (16).  The problem of minimization of criterion (16)

with respect to parameters A , B , p0 , 1Q−  and s  is a

nonlinear optimization problem.  However, with change of
variables

Z1 = p0, Z2 = A⋅Q-1, Z3 = A Z4 = A⋅s (18)

it is dramatically simplified.  Indeed, the criterion (16) takes
on the following form:
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and

� B t Q t;� � � ��  (22)

Hence, for a fixed B, the functional (19) is quadratic with
respect to the new variables Z1, Z2, Z3, and Z4.  Consequently,
its minimum can be explicitly calculated by equating to zero
the derivatives of the functional J with respect to Z1, Z2, Z3,
and Z4.  Thus, we obtain a system of linear equations of fourth
order, whose analytical solution reduces to inversion of a 4 ×4
matrix.  From this analytical solution, we obtain

A(B) = Z3(B), p0(B) = Z1(B), (23)

Q-1(B) =Z2(B)/Z3(B)⋅, and s(B) = Z4(B)/Z3(B)   (24)

Substituting Eqs. (23) and (24) back into (16), we end up with
a function of only one variable

J JB B A B p B Q B s B� � � � � � � � � �
 ��
-

, , , ,0 1 (25)

For minimization of function (25), a one-variable minimum
search procedure can be applied.  For example, in our code
ODA we successfully applied the method of golden sections,
see Refs. 16, 17.

The advantage of the procedure described above is that it
avoids numerical minimization except minimization of a
function of one variable.  Therefore, our calculation are not as
cumbersome and we avoid application of an iterative descent
methods to a stiff multivariable optimization problem.

From Eq. (15) we infer that
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Thus, to determine the dimensionless effective wellbore radius
magnitude, we need information about the ambient pressure

p∞ .  Traditional methods, like Horner plot analysis, (e.g., Ref.

18) are based on analysis of data of a specially designed test,
whereas in our case we deal with regular pumping data.

However, provided the estimates of p0 , A  and 1Q−  are

available, a well test for Horner plot analysis can be simulated
and p

�

 can be recovered from analysis of this simulated data.

Estimating ambient reservoir pressure
The main idea of estimating the ambient pressure is to use Eq.
(13) along with the estimated values of parameters p0 , A  and

1Q−  in order to produce a simulated well test data.  Then these

data can be analyzed using Horner plot analysis and the
ambient reservoir pressure can be recovered from there.  The
advantage of the proposed method is that we can assume
arbitrary injection rates and time intervals for simulating a well
test.  In fact, we can simulate a series of tests and take an
average result to minimize the impact of computational errors.

The important assumption behind Eq. (13) is that the test

period [ ]0 2,t t  is preceded with a sufficiently long time period

where the effective pumping rate was 1Q− .  "Sufficiently

long" time means that the pumping rate before the time

moment 0t  does not affect too much the pressures on the

interval [ ]1 2,t t .  Thus, in the simulations we can assume that

1Q−  was the pumping rate all the way from the very beginning

of operation at time 0t = .  Also, the entire test period [ ]0 2,t t

is much shorter than the time of operations,

0 2 0t t t−� (27)

For simulations, we select a constant pumping rate 1Q

between 0t  and 1t , and zero pumping rate (shut-in) between 1t

and 2t .  Then, from Eq. (5),
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For sufficiently large times we can approximate the
exponential integrals on the right-hand side of Eq. (28) with

natural logarithms, so that for 1 2t t t< ≤ we get
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From inequality (27), the argument of the first logarithm on the
right-hand side of Eq. (29) is much closer to unity than that of
the second logarithm.  Thus, approximately,

( )p t p∞≈ 0
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Eq. (30) is essential for Horner plot analysis.  Particularly, in
our case, it implies that the plot of pressures versus

0
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is a straight line with the slope of 45 degrees.  From Eq. (30),
the ordinate of the cross-section of this line towards with

0η =  in the plane (η , p ) produces an estimate for p∞ .  Note

that at a very large t both logarithms on the right-hand side of
Eq. (29) become comparable and approximated Eq. (30)
becomes invalid.

Now, let us turn back to Eq. (13): it is valid for sufficiently
large times, so that estimate (27) holds true.  At the same time,

2 0t t−  should not be too large, as the exponential integral on

the right-hand side of Eq. (13) goes to infinity as its argument
tends to zero.  For the simulated test we obtain from Eq. (13):
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Thus, by plotting pressures calculated using Eq. (32) versus
variable η  defined in Eq. (31), we must obtain a straight line

with the slope of 45 degrees.  Thus, to estimate p∞ , it only

remains to find the intersection of this line with the vertical
axis in the plane η , p .

To summarize, we have the following procedure of

estimating p∞ .

(1) after estimating p0  and 1Q−  using minimization

procedure from the previous section, select injection rate
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1Q  and times 1t  and 2t  to generate a pressure curve

using Eq. (32).

(2) Plot this curve versus 0

1

1 ln
t t

AQ
t t

η
−

=
−

 
 
 

 and localize

the part which is a straight line at the slope of 45 degrees.
(3) Fund the intersection of this straight line with the p-axis.

The p-coordinate of this intersection provides an estimate

for p∞ .

(4) Substitute the estimates obtained in steps (1)-(3) into Eq.
(26) to calculate the effective dimensionless wellbore
radius.

As the steps (1)-(2)-(3)-(4) require only simple
calculations, they can be performed several times at different

values of 1Q− , 0t , 1t and 2t .  For the final estimate we can

take a mean value of the individual results.

Field example
In this section we analyze injection well test data using the
methods proposed above.  Minimization of fitting criterion
(16) was performed with our code ODA (Operations Data
Analysis).

The measurements were performed at the following
conditions.  No information about the operations prior to the
test is available.  The data set begins with a short shut-in time
interval of about 4.5 hours.  Then the injection was conducted
at an approximately constant rate of 66 gallons per minute for
approximately 90 hours with a short break.  After that the well
was shut in for approximately 100 hours.  The injection rates
and pressures were measured approximately every minute.
The respective curves are presented in Fig. 2 and Fig. 3.  For
our analysis, we considered only data points accrued hourly, so
we restricted ourselves to a data file 60 times smaller than the
original one.  We obtained stable high quality data matching

for various selections of 0t , 1t and 2t .  An example is

presented in Fig. 4: the difference between measured and
calculated pressures is very small and hardly visible on the
plot.  The difference between the data curves in Fig. 3 and Fig.
4 is because in Fig. 3 we plot the entire data set, whereas in
Fig. 4 we have only analyzed data, i.e. 60 times less data

points.  In calculations presented in Fig. 4 we had 0t ≈ 72

hours, 1t ≈ 90 hours and 2t ≈ 161 hours, where the time was

measured with respect to the beginning of entire original data
interval.  For this case, the results of estimation of coefficients
A, and B, the effective pre-test injection rate and skin factor
are presented in the first row of Table 1.  The other two rows

show results for other selections of 0t , 1t and 2t .  In all three

cases we had similar quality of fitting.  Note that the recovered
parameters have very close values for all three runs as well.

The actual injection rate before 0t  was fluctuating between 65

and 66.5 gpm with a short-time drop, as can be seen in Fig. 2.

Thus, this parameter also has been recovered with high
accuracy.  The skin factor was estimated at a remarkably low
value, whereas analysis of the same data set performed
independently with traditional methods produced a skin factor
two orders of magnitude larger than ours.

The actual time intervals which we analyzed include not
only the fall-off portion of the pressure curve, but also some
part where active injection was performed.  Although the data
points beyond t2 were not used in the minimization procedure,
the quality of fitting is preserved when the calculated curve is
extended beyond t2.  Note, that for a Horner plot analysis
usually only a small portion of the data at later times is
selected.

Now let us proceed with estimation of the ambient
reservoir pressure.  Based on results in the first row of Table 1,

we simulated a well test assigning 1 0t t− =160 hours and

2 1t t− =250 hours.  By plotting the simulated pressure curve

using Eq. (32) versus variable defined in Eq. (31), we achieve
practically straight line inclined at 45 degrees, see Fig. 5.  The
deviation from the straight line at small η  is explained by

indefinite increasing of the exponential integral as its argument
tend to zero and invalidity of approximation (30) at very large
timers, as discussed above.  Averaging the calculated ambient
pressure obtained at different injection rates Q1 we obtain

p∞ =1131.8 psi for the results from the first line of Table 1.

By applying this procedure to results from Table 1 we obtain
estimates gathered in Table 2.  Again, the estimates are very
close to each other for all three runs.

Conclusions
A method to estimate formation hydraulic properties from
regular operation data is proposed.

Our analysis of the impact of pre-test pumping on well test
analysis which we started in earlier papers Refs. 9, 10 is
enhanced and extended.  In this paper, the effects of pre-test
pumping are accounted for by assuming steady-state pressure
distribution at the beginning of the test.  We demonstrated that
the main equation obtained on this way is the same as in Refs.
9, 10.  The steady-state initial pressure distribution approach,
however, hides important estimates of the impact of the pre-
test pumping which we obtained in the earlier papers.  At the
same time, it allows us to estimate another important
parameter: an effective dimensionless wellbore radius.

We developed a minimization procedure for estimating the
reservoir transmissvity and storativity along with skin factor
which combines analytical calculations with numerical
minimization of a function of one variable.  The procedure
proved to be efficient and produced high-quality data matching
in examples.

We enhanced our earlier analysis with a procedure of
estimating ambient reservoir pressure and dimensionless
wellbore radius.  For this procedure a well test is simulated
using estimated parameters obtained using the optimization
procedure mentioned above.  As in this part of our analysis we
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use only simulated data, no special operations at the well are
required.

To summarize, the following procedure is proposed for
estimating hydraulic formation properties from regular
operations data.

(A)   Select a time interval where pumping rate and
pumping pressure measurements are available.  The flow has
to demonstrate transient character at least in a part of selected
interval.

(B)   Split the entire selected time interval into two parts.
The earlier part can be called the beginning phase, where the
injection rate is only measured.  The second part is used in a
best-fitting procedure to estimate formation parameters.

(C)   Apply the minimization algorithm described above to
estimate the transmissivity, storativity, pre-test injection rate
and skin factor.  The algorithm is implemented into the code
ODA (Operations Data Analysis).

(D)   After the fitting procedure has been applied, use the
results to estimate the ambient reservoir pressure and effective
dimensionless wellbore radius.  More specifically, follow steps
(1)-(4) described above to simulate and analyze a set of well
test data.
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Table 1.  Results of the estimation procedure

t0

[hrs]
t1

[hrs]
t2

[hrs]
A

[psi/
gpm]

B
[day]

Q-1

[gpm]
s

72 90 160 0.89 0.006 67.83 -0.006
60 80 161 0.87 0.005 64.37 -0.074
50 80 170 0.87 0.005 64.39 -0.066

Table 2.  Estimation of the ambient reservoir pressure and
effective dimensionless wellbore radius

A
[psi/
gpm]

B
[day]

Q-1

[gpm]
p∞

[psi]

r

r
w

�

0.89 0.006 67.83 1131.8 0.0014
0.87 0.005 64.37 1146.0 0.0012
0.87 0.005 64.39 1141.7 0.0012
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Fig. 1—The data interval schematic
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Fig. 2—Data: the injection rates
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Fig. 3—Data: the injection pressures
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Fig. 4—The pressure curve fitting
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